If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2-20t+140
We move all terms to the left:
t-(-16t^2-20t+140)=0
We get rid of parentheses
16t^2+20t+t-140=0
We add all the numbers together, and all the variables
16t^2+21t-140=0
a = 16; b = 21; c = -140;
Δ = b2-4ac
Δ = 212-4·16·(-140)
Δ = 9401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-\sqrt{9401}}{2*16}=\frac{-21-\sqrt{9401}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+\sqrt{9401}}{2*16}=\frac{-21+\sqrt{9401}}{32} $
| 6x-10=-9+3x | | -9(-4a+4)=3a+3 | | -16+7y+7y=8+14y | | 6(2x+1=2x+26 | | Y²÷4+5y+28=4 | | 4h-8=19 | | 3=3(2x+1)+x | | m/3-20=6 | | 2x/30=12 | | t=-16t^2-12t+200 | | m-20=-6 | | 23x-1+31x-2=360 | | 3(1+4.4x)-6.1x=1.08+6.7x | | -14=8k+10 | | 23x-1+75=180 | | T+1270;t=55 | | 23x-1+31x-2=180 | | f3-–6=10 | | x+60+x+83+53=180 | | 7x+2(-7x+14)=77 | | 5x+3+52+105=180 | | -10x^2+600x-3588=0 | | –f−7=–3(–f+2)−5f | | f3−–6=10 | | h+(42-h)=138 | | 28w=504 | | -6(s-7)=-6s | | 18-3k+9k=4k | | u+79=937 | | p÷5=32 | | 27u=135 | | -8m-14-9=10-8 |